Quadratic functions and maximal Artin–Schreier curves
نویسندگان
چکیده
منابع مشابه
A note on superspecial and maximal curves
In this note we review a simple criterion, due to Ekedahl, for superspecial curves defined over finite fields.Using this we generalize and give some simple proofs for some well-known superspecial curves.
متن کاملMaximal functions associated to smooth curves.
Let t --> gamma(t), 0 </= t </= 1, be a smooth curve in IR(n). Define the maximal function [unk](f) by [unk](f)(x) = sup(0<h</=1) (1/h) (0) (h) f(x - gamma(t)) dt. We state conditions under which parallel[unk](f) parallel(p) </= A(p) parallelf parallel(p), for 1 < p </= infinity.
متن کاملa note on superspecial and maximal curves
in this note we review a simple criterion, due to ekedahl, for superspecial curves defined over finite fields.using this we generalize and give some simple proofs for some well-known superspecial curves.
متن کاملMaximal cluster sets of L-analytic functions along arbitrary curves
Let Ω be a domain in the N -dimensional real space, L be an elliptic differential operator, and (Tn) be a sequence whose members belong to a certain class of operators defined on the space of L-analytic functions on Ω. It is proved in this paper the existence of a dense linear manifold of L-analytic functions all of whose nonzero members have maximal cluster sets under the action of every Tn al...
متن کاملOptimal and maximal singular curves
Using an Euclidean approach, we prove a new upper bound for the number of closed points of degree 2 on a smooth absolutely irreducible projective algebraic curve defined over the finite field Fq. This bound enables us to provide explicit conditions on q, g and π for the nonexistence of absolutely irreducible projective algebraic curves defined over Fq of geometric genus g, arithmetic genus π an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Finite Fields and Their Applications
سال: 2014
ISSN: 1071-5797
DOI: 10.1016/j.ffa.2014.05.008